Practice 8-4 Mixed Exercises

Write each expression as an integer or a simple fraction.

1.	16 ⁰	2. 4 ⁻²	3 . 3 ⁻³	4 . 8 ⁻⁴	
5.	$\frac{1}{2^{-5}}$	6. $\frac{4}{4^{-3}}$	7. $\frac{3}{6^{-1}}$	8. $\frac{1}{2^{-5}}$	
9.	$3 \cdot 8^{0}$	10 . 16 • 2^{-2}	11 . 12 ⁻¹	12 . –7 ⁻²	
13.	$16 \cdot 4^0$	14 . 9 ⁰	15 . $\frac{32-1}{8^{-1}}$	16 . $\frac{9}{2^{-1}}$	
17.	$\frac{8^{-2}}{4^0}$	18 . $\frac{9^{-1}}{3^{-2}}$	19 . 5(-6) ⁰	20 . 3.7 ⁰	
21.	$(-9)^{-2}$	22 . (-4.9) ⁰	23 . $-6 \cdot 3^{-4}$	24 . $\frac{7^{-2}}{4^{-1}}$	
Evaluate each expression for $m = 4, n = 5$, and $p = -2$.					
25.	m^p	26 . <i>n</i> ^{<i>m</i>}	27 . <i>p^p</i>	28 . <i>n</i> ^{<i>p</i>}	
29 .	<i>m^pn</i>	30. m^{-n}	31 . <i>p</i> ^{-<i>n</i>}	32 . <i>mn^p</i>	
33.	p^{-m}	34. $\frac{m}{n^p}$	35 . $\frac{1}{n^{-m}}$	36 . $-n^{-m}$	
Rewrite each expression so that all exponents are positive.					
37.	<i>x</i> ⁻⁸	38 . <i>xy</i> ⁻³	39 . $a^{-5}b$	40 . <i>m</i> ² <i>n</i> ⁻⁹	
41.	$\frac{1}{x^{-7}}$	42. $\frac{3}{a^{-4}}$	43 . $\frac{5}{d^{-3}}$	44 . $\frac{6}{r^{-5}s^{-1}}$	
45.	$3x^{-6}y^{-5}$	46. $8a^{-3}b^2c^{-2}$	47. $15s^{-9}t^{-1}$	48 . $-7p^{-5}q^{-3}r^2$	
49.	$\frac{d-4}{e^{-7}}$	50. $\frac{3m-4}{n^{-8}}$	51. $\frac{6m^{-8}n}{p^{-1}}$	52 . $\frac{a^{-2}b^{-1}}{cd^{-3}}$	

Use a graphing calculator to graph each function over the domain $\{-2 \leq x \leq 2\}.$

......

53. $y = 2^x$	54. $y = -2^x$	55. $y = \left(\frac{1}{2}\right)^{x}$	56. $y = -\left(\frac{1}{2}\right)^x$
57. $y = 2 \cdot 4^x$	58. $y = \frac{1}{2} \cdot 4^x$	59. $y = -\left(\frac{3}{4}\right)^x$	60. $y = -3 \cdot 2^x$
61. $y = (1.1)^x$	62. $y = \frac{3}{4} \cdot 3^x$	63. $y = -2 \cdot 3^x$	64. $y = -4\left(\frac{1}{2}\right)^x$
65. $y = 2(3.5)^x$	66. $y = \left(\frac{2}{5}\right)^x$	67. $y = 5(0.5)^x$	68. $y = 7\left(\frac{1}{4}\right)^x$

.....