MATH 150 E;
FINAL EXAM « [

Dec. 14, 2009

Closed book, closed notes. SHOW ALL WORK to get full credit.
Calculators are a_llowed.

Name and section:

Instructor’s name:

1. Multiple Choice. Evaluate the following limits:
(a) lim(32® +52 ~ 1) = AL = g 98

(i) 41 (iii) 23 (iv) 0 (v) None of these
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2 Multlple choice. Compute the derivatives of the following functions:
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(v) None of these

% (d) If h(z) = (z* + 4)(sin(z? + 2)) then h'(z) =
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3. An cannon ball is shot straight upward from the ground - the height at time ¢ is given
by s(t) = 16t + 64t.

(a) Find the velocity when t = 1/4.
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ﬁ (c) How many seconds after its release does the cannon ball strike the ground? .
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4. A man 6 ft. tall is walking toward a building at a rate of 5 ft./sec. If there is a light
on the ground 50 ft. from the building, how fast is the man’s shadow on the building
growing shorter when he is 20 {t. from the building?
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N gﬁ’s You need to make a rectangular box with square base and no top, having a lotal surface
j’{;;r_f area of 64 5q. in. What are the dimensions of the box giving mximal volume? Explain
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why your answer is & maximum.
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6. Consider the region bounded by y = 2z — z* and the z-axis.
(a) Find the area of this region.
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‘% (b) Consider the solid obtained by rotating this region around the z-axis. Calculate

the volume of this solid. 2

3 4 J{
‘ v oy b\ axtaxoexdx
“IT(M'K‘) JY AT \4;{"4.)( -2X + X A X o

0

*

L8

Lo

(c) Consider the solid obtained by rotating this region around the line y = 1. Calculate
the volume of this solid.
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7. Consider this function, along with its derivative and its second derivative (which you do
not have to verify):
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w?a) What are the critical points (if any)?
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(e) Using this information, sketch the graph, indicating any maxima and minima and
asymptotes.




8. Evaluate the following integrals using the fundamental theorem of calculus (Note: some
of these are definite integrals, some are indefinite)
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