7-5 SOLVING EQUATIONS INVOLVING EXPONENTS

We know that to raise a power to a power, we multiply exponents. Therefore, for positive values of x and non-zero integer values of a:

$$(x^{a})^{\frac{1}{a}} = x^{a(\frac{1}{a})} = x^{1} = x$$
 $(x^{\frac{1}{a}})^{a} = x^{\frac{1}{a(a)}} = x^{1} = x$

We can use this relationship to solve for x in an equation such as $x^{\frac{2}{3}} = 25$. To solve for x, we need to raise $x^{\frac{2}{3}}$ to the power that is the reciprocal of the exponent $\frac{2}{3}$. The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$.

$$x^{\frac{2}{3}} = 25$$
$$(x^{\frac{2}{3}})^{\frac{3}{2}} = 25^{\frac{3}{2}}$$
$$x^{1} = 25^{\frac{3}{2}}$$
$$x = 25^{\frac{3}{2}}$$

Note that $25^{\frac{3}{2}}$ means $(25^{\frac{1}{2}})^{\frac{3}{2}}$, that is, the cube of the square root of 25.

$$x = (\sqrt{25})^3 = 5^3 = 125$$

EXAMPLE I

Solve each equation and check: **a.** $2a^{-3} - 1 = 15$ **b.** $2\sqrt[3]{x^5} + 1 = 487$

Solution

How to Proceed

h. $2\sqrt[3]{x^5} + 1 = 487$ **a.** $2a^{-3} - 1 = 15$ Write the equation with only the variable $2\sqrt[3]{x^5} = 487$ $2a^{-3} = 16$ term on one side of the equation: $x^{\frac{1}{2}} = 243$ $a^{-3} = 8$ (2) Divide both sides of the equation by the coefficient of the variable term: $(a^{-3})^{-\frac{1}{2}} = 8^{-\frac{1}{2}}$ $(x^{\frac{3}{2}})^{\frac{3}{2}} = 243^{\frac{3}{2}}$ (3) Raise both sides of the equation to the power $a = 8^{-\frac{1}{3}}$ $x = 243^{\frac{1}{3}}$ that is the reciprocal of the exponent of the variable: $x = 243^{\frac{1}{3}}$ $a = \frac{1}{d}$ (4) Simplify the right side of the equation: $=(\sqrt[3]{243})^3$ $= 3^{3}$ = 27

(5) Check the solution:	a. $2a^{-3} - 1 = 15$	b. $2\sqrt[3]{x^5} + 1 = 487$
	$2\left(\frac{1}{2}\right)^{-3} - 1 \stackrel{?}{=} 15$	$2\sqrt[3]{27^5} + 1 \stackrel{?}{=} 487$
	$2(2)^3 - 1 \stackrel{?}{=} 15$	$2\sqrt[3]{(3^3)^5} + 1 \stackrel{?}{=} 487$
	$2(8) - 1 \stackrel{?}{=} 15$	$2\sqrt[3]{3^{15}} + 1 \stackrel{?}{=} 486$
	16 − 1 ² 15	$2(3^5) + 1 \stackrel{?}{=} 487$
	15 = 15 🗸	487 = 487 🗸

Answers **a.** $a = \frac{1}{2}$ **b.** x = 27

Exercises

Writing About Mathematics

- **1.** Ethan said that to solve the equation $(x + 3)^{\frac{1}{2}} = 5$, the first step should be to square both sides of the equation. Do you agree with Ethan? Explain why or why not.
- 2. Chloe changed the equation $a^{-2} = 36$ to the equation $\frac{1}{a^2} = \frac{1}{36}$ and then took the square root of each side. Will Chloe's solution be correct? Explain why or why not.

Developing Skills

In 3-17 solve each equation and check.

3. $x^{\frac{1}{3}} = 4$	4. $a^{\frac{1}{5}} = 2$	5. $x^{\frac{2}{5}} = 9$
6. $b^{\frac{1}{2}} = 8$	7. $x^{-2} = 9$	8. $b^{-5} = \frac{1}{32}$
9. $2y^{-1} = 12$	10. $9a^{-\frac{3}{4}} = \frac{1}{3}$	11. $5x^{\frac{3}{4}} = 40$
12. $5x^{\frac{1}{2}} + 7 = 22$	13. $14 - 4b^{\frac{1}{3}} = 2$	14. $(2x)^{\frac{1}{2}} + 3 = 15$
15. $3a^3 = 81$	16. $x^5 = 3,125$	17. $z^{\frac{1}{2}} = \sqrt{81}$

In 18-23, solve for the variable in each equation. Express the solution to the nearest hundredth.

18. $x^{-3} = 24$ **19.** $y^{\frac{2}{9}} = 6$ **20.** $a^{-\frac{3}{4}} = 0.85$ **21.** $3z^3 + 2 = 27$ **22.** $5 + b^5 = 56$ **23.** $(3w)^9 + 2 = 81$

24. Solve for x and check: $\frac{x^{\frac{1}{3}}}{x^{\frac{2}{3}}} = 10$. Use the rule for the division of powers with like bases to simplify the left side of the equation.

Applying Skills

25. Show that if the area of one face of a cube is B, the volume of the cube is $B^{\frac{3}{2}}$.

26. If the area of one face of a cube is B and the volume of the cube is V, express B in terms of V.

7-6 SOLVING EXPONENTIAL EQUATIONS

Solving Exponential Equations With the Same Base

An exponential equation is an equation that contains a power with a variable exponent. For example, $2^{2x} = 8$ and $5^{x-1} = 0.04$ are exponential equations.

An exponential function $y = b^x$ is a one-to-one function since it is increasing for b > 1 and decreasing for 0 < b < 1. Let $y_1 = b^{x_1}$ and $y_2 = b^{x_2}$. If $y_1 = y_2$, then $b^{x_1} = b^{x_2}$ and $x_1 = x_2$.

► In general, if b^p = b^q, then p = q.

We can use this fact to solve exponential equations that have the same base.

EXAMPLE I

Solve and check: $3^x = 3^{2x-2}$

Solution Since the bases are equal, the exponents must be equal.

Check
$3^x = 3^{2x-2}$
32 = 32(2)-2
$3^2 = 3^2 \checkmark$

Answer x = 2

Solving Exponential Equations With Different Bases

How do we solve exponential equations such as $2^{2x} = 8$ or $5^{x-1} = 0.04$? One approach is, if possible, to write each term as a power of the same base. For example:

$$2^{2x} = 8 \qquad 5^{x-1} = 0.04$$

$$2^{2x} = 2^{3} \qquad 5^{x-1} = \frac{4}{100}$$

$$2x = 3 \qquad 5^{x-1} = \frac{1}{25}$$

$$x = \frac{3}{2} \qquad 5^{x-1} = \frac{1}{5^{2}}$$

$$5^{x-1} = 5^{-2}$$

$$x - 1 = -2$$

$$x = -1$$

EXAMPLE 2

Solve and check: $4^a = 8^{a+1}$

Solution The bases, 4 and 8, can each be written as a power of $2: 4 = 2^2, 8 = 2^3$.

$4^{a} = 8^{a+1}$	Check
$(2^2)^a = (2^3)^{a+1}$	$4^{a} = 8^{a+1}$
$2^{2a} = 2^{3a+3}$	$4^{-3} \stackrel{?}{=} 8^{-3+1}$
2a = 3a + 3	$4^{-3} \stackrel{?}{=} 8^{-2}$
-a = 3	$\frac{1}{4^3} \stackrel{?}{=} \frac{1}{8^2}$
a = -3	$\frac{1}{64} = \frac{1}{64} \checkmark$

Answer a = -3

EXAMPLE 3

Solve and check: $3 + 7^{x-1} = 10$

Solution Add -3 to each side of the equation to isolate the power.

$3 + 7^{x-1} = 10$	Check
$7^{x-1} = 7$	$3 + 7^{x-1} = 10$
x - 1 = 1	$3 + 7^{2-1} \stackrel{?}{=} 10$
x = 2	$3 + 7^1 \stackrel{?}{=} 10$
	10 = 10 🗸

Answer x = 2

Exercises

Writing About Mathematics

1. What value of a makes the equation $6^a = 1$ true? Justify your answer.

2. Explain why the equation 3^a = 5^{a-1} cannot be solved using the procedure used in this section.

Developing Skills

In 3-14, write each number as a power.

3.9	4. 27	5. 25	6. 49
7. 1,000	8. 32	9. ¹ / ₈	10. $\frac{1}{216}$
11. 0.001	12. 0.125	13. 0.81	14. 0.16

308 Exponential Functions

In 15-38, solve each equation and check.

15. $2^{x} = 16$ **18.** $7^{\pm} = \frac{1}{49}$ 21. $6^{3x} = 6^{x-1}$ 24. $40^{x} = 7^{3x+1}$ **27.** $100^{x} = 1,000^{x-1}$ **30.** $\left(\frac{1}{4}\right)^{x} = 8^{1-x}$ 33. $(0.25)^{x-2} = 4^x$ $36.5 + 7^{4} = 6$

19. $4^{x+2} = 4^{2x}$
22. $3^{x+2} = 9^x$
25. $2^{2x+1} = 16^x$
28. 125 ^{x-1} = 25 ^x
31. $\left(\frac{1}{3}\right)^{x} = 9^{1-x}$
34. $5^{x-1} = (0.04)^{2x}$
37. $e^{2x+2} = e^{x-1}$

16. $3^{x} = 27$

17. $5^{2} = \frac{1}{5}$ 20. $3^{x+1} = 3^{2x+3}$ 23. $25^{x} = 5^{x+3}$ **26.** $9^{x-1} = 27^x$ **29.** $6^{2-x} = \left(\frac{1}{36}\right)^2$ **32.** $(0.01)^{2x} = 100^{2-x}$ 35. $4^{2} + 7 = 15$ **38.** $3^{x^2+2} = 3^6$