Integrated Algebra 2 and Trigonometry

Quarter 1

I: Functions: Composition

I. 1 (A.42) Composition of linear functions $f(g(x))$. $f(x)+g(x)$.
I. 2 (A.42) Composition of linear and quadratic functions

II: Functions: Quadratic

II. 1 Parabola - The graph of a function of degree 2
(A.46; A.70) What are the characteristics of the following functions:

$$
\begin{aligned}
& f(x)=x^{\wedge} 2, f(x)=-x^{\wedge} 2, f(x)=5 x^{\wedge} 2, f(x)=1 / 5 x^{\wedge} 2 . \\
& f(x)=x^{\wedge} 2+3, f(x)=-x^{\wedge} 2+3, f(x)=5 x^{\wedge} 2+3, f(x)=1 / 5 x^{\wedge} 2+3 .
\end{aligned}
$$

II. 2 (A.3) Intersection of parabola and linear equation, $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{y}=0, \mathrm{y}=\mathrm{c}$ for some constant c .
II.2A Characteristics of a Parabola:

Axis of symmetry (-b/2a)
Finding the Vertex (maximum/minimum)
II. 3 (A.20; A.21) Root Theory: x-intercept

Using the graphing calculator and a series of equations, find the roots/zeroes/solutions of each equation.
II. 4 (A.2; A.25) Quadratic Formula; discriminant.

Determine the nature of the roots using discriminant. $\mathrm{B} \wedge 2-4 \mathrm{ac}$
II. 5 Maximize Volume and Area: Various projects

Integrated Algebra 2 and Trigonometry

III: Inverses of Linear and Quadratic Functions

III. 1 (A.43) Determine if a function is 1 to 1 , onto or both
III. 2 (A.44) Finding the inverse function of $f(x)$
III. 3 Graphing the inverse function of $\mathrm{f}(\mathrm{x})$
III. 4 Using lines of symmetry $y=x$ to graph the inverse function of $f(x)$

IV: Trigonometry: The Sine Function

IV. 1 (A.60; A.62) Sine as the y-value for unit circle for $0 \leq \theta \leq 90^{\circ}$
IV. 2 (A.57; A.62) Sine as the y-value for unit circle for $90 \leq \theta \leq 360^{\circ}$
IV. 3 (A.57) Reference angles
IV. 4 (A.46; A.70) Graph of the sine function: Amplitude (A sin x + D)
IV. 5 (A.55; A.56) Sine function for special triangles: 30-60-90; 45-45-90
IV. 6 (A.73) Use Law of Sines to find unknown sides or angles of triangles

V: Statistics: Mean and Median

V. 1 (N.10) Understanding the Mean. Sigma (Σ) notation
V. 2 (S.5) Normal Distribution
V. 3 (S.4) Standard Deviation
V. 4 Review of Median and Box/Whisker Plot
V. 5 Analysis of Data with Mean and Median:

Mean $=$ Median, Mean $>$ Median, Mean $<$ Median

Integrated Algebra 2 and Trigonometry

Quarter 2

VI: Quadratic Equations

VI. 1 (A.7) Factoring: Extraction, difference of perfect squares, quadratic trinomials
VI. 2 Solving quadratic equations by factoring.

Using a series of trinomial quadratic equations, solve each quadratic by factoring and check solutions by substitution. Use your calculator to verify your answer.
VI. 3 (N.5) Irrational numbers; Definition of the radical symbol simplifying radical monomials, radical expressions.
VI. 4 (A.13; A.14; 1.15) Rationalizing denominators, 4 operations
VI. 5 (A.24) Completing the square
VI. 6 (A.46) Phase shift for parabola using sine curve as a model

VII: Exponential and Logarithmic Functions

VII. 1 (A.37; A.38) Relations and functions (defining and comparing/contrasting)
VII. 2 (A.40; A.41Set notation: Introduction to function symbolism: Domain, range, 1-to-1, image
VII. 3 (A.39) Finding Domain and Range of a function (ex. $y=-\sqrt{x-3}+2$
VII. 4 (N.1; A.8; A.9) Deriving and working with Negative Exponents
VII. 5 (N.1; A.8; A.10; A.11) Deriving and working with Fractional Exponents
VII. 6 (A.6; A.12; A.53) Exponential Function (Exponential growth and decay), graph and base e
VII. 7 (A.18; A.19; A.54) Logarithm Function (common logarithm, natural logarithms); graph
VII. 8 (A.28) Solving Logarithmic Equations by rewriting as an exponential equation
VII. 9 (A.27) Solve Exponential Equations with and without common bases

Integrated Algebra 2 and Trigonometry

VIII: The Unit Circle for the Sine Function

VIII. 1 (A.57) Coterminal and Reference angles
VIII. 2 (A.60) Unit Circle and the Sine Function
VIII. 3 Relation of the Unit Circle and the Sine Wave

IX: Regressions AND Sequences/Series

IX. 1 (S.6; S.8) Linear Regression and the correlation coefficient
IX. 2 (S.6) Exponential Regression
IX. 3 (S.6) Quadratic Regression
IX. 4 (S.6) Power Regression
IX. 5 (A.29) Identify an arithmetic or geometric sequence and find the formula for the $\mathrm{n}^{\text {th }}$ term
IX. 6 (A.30) Determine the common difference in an arithmetic sequence
IX. 7 (A.31) Determine the common ratio in a geometric sequence
IX. 5 (A.32) Determine a specified term of an arithmetic or geometric sequence
IX. 6 (A.33) Specify terms of a sequence, given its recursive definition
IX. 7 (A.35) Determine the sum of the first n terms of an arithmetic/geometric series

X: Cosine Function

X. 1 (A.60; A.62) Cosine as the x -value for unit circle for $0 \leq \theta \leq 90^{\circ}$
X. 2 (A.60; A.62) Cosine as the y-value for unit circle for $90 \leq \theta \leq 360^{\circ}$
X. 3 (A.57) Reference angles and coterminal angles
X. 4 (A.46; A-70) Graph of the Cosine function: Amplitude $(\mathrm{A} \cos \mathrm{x}+\mathrm{D})$
X. 5 (A.55; A.56) Cosine function for special triangles: 30-60-90; 45-45-90

Integrated Algebra 2 and Trigonometry

Quarter 3

XI: Solving Other Algebraic and Transcendental Equations

XI. 1 (A.1) Solve absolute value and inequalities involving linear equations
XI. 2 Solving quadratic equations by factoring
XI. 3 (A.25) Solving quadratic equations using the Quadratic Formula
XI. 4 (A.3) Solving systems of linear/quadratic equations algebraically; extraneous roots
XI. 5 (A.68) Solving Trigonometric equations by factoring
XI. 6 (A.68) Solving Trigonometric equations using the Quadratic Formula
XI. 7 (A.4) Solving quadratic inequalities
XI. 8 (A.26) Solve polynomial equations of higher degree that can be solved by factoring and/or the quadratic formula

XII: Radian as an Angle Measure

XII. 1 (M.1) Using a radian protractor to find the measure of angles
XII. 2 (M.1) Using a radian protractor to find the sum of angles of polygons
XII. 3 (M.2) Relation of radian measure and degree measure
XII. 4 (M.1) Definition of a radian
XII. 5 Using radians in relation to Sine and Cosine Functions
XII. 6 Trigonometric Applications including special triangle

XIII: Complex Numbers

XIII. 1 (N.6; N.7; N.9) Understanding, operations using complex numbers, powers of í.
XIII. 2 Graph of complex numbers
XIII. 3 (N.8) Determine the conjugate of a complex number

Integrated Algebra 2 and Trigonometry

XIV: Permutations

XIV. 1 (S.12) Fundamental Counting Principle
XIV. 2 (S.9; S.10; S.12) Calculate the number of possible permutations (${ }_{\mathrm{n}} \mathrm{P}_{\mathrm{r}}$) of n items taken r at a time
XIV. 4 (S.12) Use permutations and the Fundamental Counting Principle to determine the number of elements in the sample space and a specific subset (event)

XV: Tangent Function

XV. 1 Relation of Slope of a line and Tangent
XV. 2 (A.60; 62) Tangent as the x -value for unit circle for $0 \leq \theta \leq 90^{\circ}$
XV. 3 Points of discontinuity: Tangent function for multiples of $\pi / 2$ radians
XV. 4 (A.60; 62) Tangent as the y-value for unit circle for $90 \leq \theta \leq 360^{\circ}$
XV. 5 (A.57) Reference angles and coterminal angles
XV. 6 (A.46; A.70) Graph of the Tangent function: Amplitude (A tan x + D)
XV. 7 (A.55; A.56) Tangent function for special triangles: 30-60-90; 45-45-90

Integrated Algebra 2 and Trigonometry

Quarter 4

XVI: Binomial Probability

XVI. 1 (S.9; S.10; S.12) Calculate the number of possible combinations $\left({ }_{n} \mathrm{C}_{\mathrm{r}}\right)$ of n items taken r at a time
XVI. 2 (S.13) Calculate theoretical probabilities including geometric applications
XVI. 3 S.14) Calculate empirical probabilities
XVI. 4 (A.36; S.15) Know and apply the binomial probability formula to events involving the terms exactly, at least, and at most.
XVI. 5 (S.16) Use the normal distribution as an approximation for binomial probabilities.

XVII: More Trigonometric Functions and Inverse Functions

XVII. 1 (A.58; A.59) Secant, Cosecant and Cotangent Functions as multiplicative inverses
XVII. 2 (A.71) Sketch and recognize the graphs of the secant, cosecant and cotangent functions
XVII. 3 (A.44) Finding an inverse of algebraic functions
XVII. 4 (A.45) Determine the inverse of a function and use composition to justify the result
XVII. 4 (A.63; A.64) Inverse of Trigonometric functions, restrictions on domains
XVII. 5 (A.65) Sketch the graph of an inverse Trigonometric Function
XVII. 6 (A.70; 72) Write the trigonometric function that is represented by a given periodic graph, interpreting amplitude, period, frequency and phase shift.

Integrated Algebra 2 and Trigonometry

XVIII: Circles

XVIII. 1 The circle and the Pythagorean Theorem
XVIII. 2 (A.47) Determine the center-radius form for the equation of a circle in standard form
XVIII. 3 (A.48) Write the equation of a circle, given it center and a point on the circle
XVIII. 4 (A.49) Write the equation of a circle from its graph

XIX: Laws of Trigonometric Functions

XIX. 1 (A.73) Use Law of Cosines to find unknown sides or angles of triangles
XIX. 2 (A.74) Determine the area of a triangle or parallelogram given the measure of two sides and the included angle.
XIX. 3 (A.75) Determine the solution(s) from the SSA situation (ambiguous case)
XIX. 4 (A.76) Apply the angle sum and difference formulas for trigonometric functions
XIX. 5 (A.77) Apply the double-angle and half-angle formulas for trigonometric functions

XX: \quad Equations with Radicals and Rational Numbers

XX. 1 (A.22) Solving radical equations
XX. 2 (A.23) Solving rational equations and inequalities

