Practice 10-2, Example Exercises

1. $\angle \mathit{KML} \cong \angle \mathit{PMN}$ because vertical angles are congruent. $\angle \mathit{K} \cong \angle \mathit{P}$ (Given). Therefore $\triangle \mathit{KML} \sim \triangle \mathit{PMN}$ by the AA \sim Postulate. **2.** Since $\overline{\mathit{AB}} \parallel \overline{\mathit{DE}}$, alternate interior angles are \cong . So $\angle \mathit{BAC} \cong \angle \mathit{DEC}$ and $\angle \mathit{ABC} \cong \angle \mathit{EDC}$. Then $\triangle \mathit{ABC} \sim \triangle \mathit{EDC}$ by the AA \sim Postulate. **3.** $\angle \mathit{Y} \cong \angle \mathit{S}$ since all right angles are \cong . $\angle \mathit{Z} \cong \angle \mathit{R}$ (Given). Therefore $\triangle \mathit{ZYX} \sim \triangle \mathit{RST}$ by the AA \sim Postulate. **4.** $\frac{28}{3}$ **5.** $\frac{50}{7}$ **6.** 8 **7.** 12 **8.** $\frac{55}{6}$ **9.** $\frac{16}{5}$ **10.** $\angle \mathit{EAD} \cong \angle \mathit{CAB}$ because vertical angles are \cong . Then, since $\frac{\mathit{EA}}{\mathit{CA}} = \frac{7}{10.5} = \frac{2}{3}$ and $\frac{\mathit{DA}}{\mathit{BA}} = \frac{6}{9} = \frac{2}{3}$, $\triangle \mathit{EAD} \sim \triangle \mathit{CAB}$ by the SAS \sim Theorem; x = 6.

11. Since $\frac{QR}{MN} = \frac{RM}{NP} = \frac{MQ}{PM} = \frac{1}{2}$, $\triangle QRM \sim \triangle MNP$ by the SSS \sim Theorem; x = 90. **12.** Since $\frac{AB}{XY} = \frac{BC}{YZ} = \frac{3}{2}$ and $\angle B \cong \angle Y$ (Given), $\triangle ABC \sim \triangle XYZ$ by the SAS \sim Theorem; $x = \frac{10}{3}$.