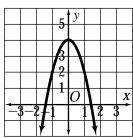
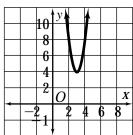
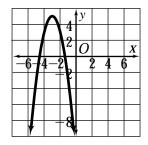

Mixed Exercises

Write the equation of the parabola shown.




3.


4.

5.

6.

Sketch each parabola. Label the vertex and axis of symmetry.

7.
$$y = (x - 2)^2 - 3$$
 8. $y = (x - 6)^2 + 6$

8.
$$v = (x - 6)^2 + 6$$

9.
$$y = \frac{1}{2}(x - 1)^2 - 1$$

10.
$$y = 8(x + 1)^2 - 2$$

11.
$$y = -3(x - 1)^2 +$$

12.
$$y = 3(x + 2)^2 + 4$$

10.
$$y = 8(x + 1)^2 - 2$$

11. $y = -3(x - 1)^2 + 3$
12. $y = 3(x + 2)^2 + 4$
13. $y = \frac{1}{8}(x + 1)^2 - 1$
14. $y = \frac{1}{2}(x + 6)^2 - 2$
15. $y = 2(x + 3)^2 - 3$

14.
$$y = \frac{1}{2}(x + 6)^2 - 2$$

15.
$$y = 2(x + 3)^2 - 3$$

16.
$$y = 4(x - 2)^2$$

17.
$$y = -2(x + 1)^2 - 5$$

18.
$$y = 4(x - 1)^2 - 2$$

Find the vertex and axis of symmetry for each parabola.

19.
$$y = 3x^2$$

20.
$$y = -x^2 + 2$$

21.
$$y = x^2 - 5x + 4$$

22.
$$y = x^2 - 8x + 7$$

23.
$$y = \frac{1}{2}x^2 - x - 2$$

24.
$$y = x^2 - 4x + 3$$

- **25**. The profit *p* of the barber each week depends on his charge *c* per haircut. It is modeled by the equation $p = -200(c - 6)^2 + 2500$. Sketch the graph of the equation. What price should he charge for the largest profit?
- 26. The traffic count in a subdivision beside the mall (in cars per hour) was 109 at 3 A.M., 469 at 7 A.M., and it reaches its peak of 550 cars at 10 A.M. Find an equation relating the traffic count *c* to the time *t*.
- 27. A pen is to be constructed alongside a barn using 120 ft of fencing. What should the dimensions of the pen be to maximize its area?