Practice 7-6

Mixed Exercises

The formula $P = 50e^{-\frac{t}{25}}$ gives the power output, P, in watts, of a satellite in t days. Find how long a satellite with the given power output will operate.

1. 10 watts

2. 12 watts

3. 14 watts

The formula for the maximum velocity v of a rocket is $v = c \ln R$, where c is the velocity of the exhaust and R is the mass ratio of the rocket. A rocket must reach 7.8 km/s to attain a stable orbit.

- **4.** Find the maximum velocity of a rocket with a mass ratio of about 18 and an exhaust velocity of 2.2 km/s. Can this rocket achieve a stable orbit?
- 5. What mass ratio would be needed to achieve a stable orbit for a rocket with an exhaust velocity of 2.5 km/s?
- **6.** A rocket with an exhaust velocity of 2.4 km/s can reach a maximum velocity of 7.8 km/s. What is the mass ratio of the rocket?

Evaluate each expression without a calculator.

7.
$$\ln e^3$$

8.
$$e^{\ln 2}$$

9.
$$e^{\ln 6}$$

10.
$$\ln e^8$$

11.
$$5 \ln e^7$$

Solve each equation. Use properties of logarithms to simplify each as needed.

12.
$$\ln x = 27$$

15.
$$\ln x - \ln 4 = 1$$

18.
$$e^{2x} - 6 = 5$$

21.
$$4 - e^x = 2$$

24.
$$\ln x + \ln (x + 1) = 2$$

27.
$$\ln x - \ln 3 = 9$$

30.
$$7e^{4x} = 3$$

33.
$$e^{\ln x} = 31$$

36.
$$\ln\left(\frac{2x}{3} + 5\right) = 8$$

39.
$$\ln (2x + 3) - \ln x = 9$$

42.
$$e^{\ln 2x} = 44$$

13.
$$3 \ln 2x = 6$$

16.
$$e^x = 3$$

19.
$$e^{3x+5} = 123$$

22.
$$e^{\frac{3x}{4}} = 4$$

25.
$$\ln (3x - 2) = -3$$

28.
$$2 \ln x - \ln 6 = 10$$

31.
$$e^{3x-1}=0$$

34.
$$5e^{\ln 3x} = 12$$

37.
$$\ln 5x = 5$$

40.
$$e^{4x} - 3 = 0.012$$

43.
$$e^{\ln x} + \ln e^{3x} = e^{\ln 8}$$

14.
$$\ln x + \ln 2x = 6$$

17.
$$e^{3x} = 0.002$$

20.
$$5e^{6x} = 12$$

23.
$$7e^{4x} - 2 = -1$$

26.
$$\ln (5x - 1) - \ln x = -2$$

29.
$$\ln x + \ln 2x = 1$$

32.
$$e^{2(3x+1)} = 42$$

35.
$$6 \ln e^x = 21$$

38.
$$\ln (2x + 3) + \ln x = 9$$

41.
$$\ln e^{2x} = 44$$

44.
$$2 \ln e^x + \ln e^{3x} = 4$$