Practice 5-7

Example Exercises

Example 1

Find the x- and y-intercept of each equation.

1.
$$2x + v = 4$$

2.
$$x + 3y = 9$$

3.
$$2x + 3y = 6$$

1.
$$2x + y = 4$$
 2. $x + 3y = 9$ 3. $2x + 3y = 6$ 4. $4x - 5y = 10$

Graph each equation.

5.
$$x + y = 5$$

6.
$$x + 3y = -6$$

5.
$$x + y = 5$$
 6. $x + 3y = -6$ 7. $-5x + 3y = 15$ 8. $3x - 2y = 12$

8.
$$3x - 2y = 12$$

9.
$$-x + 4y = 8$$

10.
$$3x + 2y = 6$$

9.
$$-x + 4y = 8$$
 10. $3x + 2y = 6$ 11. $-2x + 5y = 5$ 12. $5x + 6y = 18$

12.
$$5x + 6y = 18$$

Example 2

Graph each equation using a graphing calculator. Make a sketch of the graph. Include Xmin, Xmax, Ymin, Ymax, and the x- and y-intercepts.

13.
$$4x + 5y = 80$$

14.
$$6x + 7y = 84$$

15.
$$3x + 10y = 90$$

13.
$$4x + 5y = 80$$
 14. $6x + 7y = 84$ 15. $3x + 10y = 90$ 16. $12x + 5y = 180$

17.
$$-5x + 16y = 160$$
 18. $8x - 6y = -192$ 19. $7x - 5y = 70$ 20. $9x + 7y = -126$

18.
$$8x - 6v = -192$$

19.
$$7x - 5y = 70$$

20.
$$9x + 7v = -126$$

Example 3

- 21. You are buying \$60 worth of a lawn seed mixture that consists of two types of seed. One type costs \$5/lb and the other costs \$6/lb.
 - a. Write an equation to find the amount of each seed that you can buy.
 - **b**. Graph your equation.
- 22. Suppose you have two summer jobs. You earn \$4/h baby-sitting and \$5/h weeding gardens. You want to earn \$100.
 - a. Write an equation to find the time you would need to work at each job.
 - **b**. Graph your equation.
 - c. Use your graph to find two different combinations of hours worked.

Example 4

Write an equation for a line through the given point with the given slope using the Ax + By = C form.

23.
$$(2,5)$$
; $m=3$

24.
$$(6,1)$$
; $m=5$

23.
$$(2,5)$$
; $m=3$ **24.** $(6,1)$; $m=5$ **25.** $(-2,4)$; $m=-4$ **26.** $(7,-5)$; $m=2$

26.
$$(7, -5)$$
; $m = 2$

27.
$$(-2,7)$$
; $m = \frac{1}{2}$

28.
$$(4,3); m = \frac{3}{2}$$

29.
$$(-9, 4)$$
; $m = -\frac{5}{3}$

27.
$$(-2,7); m = \frac{1}{2}$$
 28. $(4,3); m = \frac{3}{2}$ **29.** $(-9,4); m = -\frac{5}{3}$ **30.** $(-6,-2); m = -\frac{1}{4}$