Practice 8-7 Mixed Exercises

Simplify each expression. Use positive exponents.

1.	$(4a^5)^3$	2.	(2 -3) 4	3.	$(m^{-3}n^4)^{-4}$
4.	$(x^5)^2$	5.	$2^5 \cdot (2^4)^2$	6.	$(4x^4)^3(2xy^3)^2$
7.	$x^4 \cdot (x^4)^3$	8.	$(x^5y^3)^3(xy^5)^2$	9.	$(5^2)^2$
10.	$(a^4)^{-5} \bullet a^{13}$	11.	$(3f^4g^{-3})^3(f^2g^{-2})^{-1}$	12.	$x^3 \cdot (x^3)^5$
13.	$(d^2)^{-4}$	14.	$(a^3b^4)^{-2}(a^{-3}b^{-5})^{-4}$	15.	$(x^2 y)^4$
16.	$(12b^{-2})^2$	17.	$(m^{-5})^{-3}$	18.	$(x^{-4})^5(x^3y^2)^5$
19.	$(y^6)^{-3} \bullet y^{21}$	20.	$n^6 \cdot (n^{-2})^5$	21.	$(m^5)^{-3}(m^4n^5)^4$
22.	$(a^3)^6$	23.	$b^{-9} \cdot (b^2)^4$	24.	$(4^{-1}s^3)^{-2}$
25.	$(5a^3b^5)^4$	26.	$(b^{-3})^{6}$	27.	$(y^6)^3$
28.	$a^{-4} \cdot (a^4 b^3)^2$	29.	$(x^4y)^3$	30.	$d^3 \cdot (d^2)^5$

Multiply. Give your answers in scientific notation.

31. $10^{-9} \cdot (2 \times 10^2)^2$	32. $(3 \times 10^{-6})^3$	33. $10^4 \cdot (4 \times 10^6)^3$
34. $(9 \times 10^7)^2$	35. $10^{-3} \cdot (2 \times 10^3)^5$	36. $(7 \times 10^5)^3$
37 . $(5 \times 10^5)^4$	38 . $(2 \times 10^{-3})^3$	39 . $(5 \times 10^2)^{-3}$
40. $(3 \times 10^5)^4$	41 . $(4 \times 10^8)^{-3}$	42 . $(1 \times 10^{-5})^{-5}$
43. $10^5 \cdot (8 \times 10^7)^3$	44. $(10^2)^3(6 \times 10^{-3})^3$	45. $10^7 \cdot (2 \times 10^2)^4$

- 46. The kinetic energy, in joules, of a moving object is found by using the formula $E = \frac{1}{2}mv^2$, where *m* is the mass and *v* is the speed of the object. The mass of a car is 1.59 $\,\times\,$ 10 3 kg. The car is traveling at 2.7×10^1 m/s. What is the kinetic energy of the car?
- 47. The moon is shaped somewhat like a sphere. The surface area of the moon is found by using the formula $S = 12.56 r^2$. What is the surface area of the moon if the radius is 1.08×10^3 mi?
- 48. Because of a record corn harvest, excess corn is stored on the ground in a pile. The pile is shaped liked a cone. The height of the pile is 25 ft and the radius of the pile is 1.2×10^2 ft. Use the formula $V = \frac{1}{3}\pi r^2 h$ to find the volume.
- **49**. The distance in feet that an object travels in *t* seconds is given by the formula $d = 64t^2$. How far has the object traveled after 1.5 \times 10³ s?