Practice 8-6

Mixed Exercises

Simplify each expression. Use only positive exponents.

1.
$$(3d^{-4})(5d^8)$$

4.
$$a^3 \cdot a$$

7.
$$p^7 \cdot q^5 \cdot p^6$$

10.
$$\frac{1}{b^{-7} \cdot b^5}$$

13.
$$(8d^4)(4d^7)$$

16.
$$r^7 \cdot s^4 \cdot s \cdot r^3$$

19.
$$s^8 \cdot s^{-9} \cdot s^3$$

22.
$$m^{12} \cdot m^{-14}$$

25.
$$a^{-7} \cdot a^9$$

28.
$$f^5 \cdot f^2 \cdot f^0$$

2.
$$(-8m^4)(4m^8)$$

5.
$$k^8 \cdot k^5$$

8.
$$(-1.5a^5b^2)(6a)$$

11.
$$p^5 \cdot q^2 \cdot p^4$$

14.
$$x^{-9} \cdot x^3 \cdot x^2$$

17.
$$b^7 \cdot b^{13}$$

20.
$$(6r^4s^3)(9rs^2)$$

23.
$$s^7 \cdot t^4 \cdot t^8$$

26.
$$\frac{1}{h^7 \cdot h^3}$$

29.
$$r^6 \cdot r^{-13}$$

3.
$$n^{-6} \cdot n^{-9}$$

6.
$$(3p^{-15})(6p^{11})$$

9.
$$(-2d^3e^3)(6d^4e^6)$$

12.
$$\frac{1}{n^6 \cdot n^{-5}}$$

15.
$$2^3 \cdot 2^2$$

18.
$$(7p^4)(5p^9)$$

21.
$$4^3 \cdot 4^2$$

24.
$$(-3xy^6)(3.2x^5y)$$

27.
$$\frac{1}{t^{-5} \cdot t^{-3}}$$

30.
$$5^{-6} \cdot 5^{4}$$

Simplify. Give the answer in scientific notation.

31.
$$(7 \times 10^7)(5 \times 10^{-5})$$

34. $(4 \times 10^{9})(4.1 \times 10^{8})$

32.
$$5(3 \times 10^8)(3 \times 10^4)$$

35.
$$(7.2 \times 10^{-7})(2 \times 10^{-5})$$

37.
$$(6 \times 10^{-6})(5.2 \times 10^{4})$$

38.
$$(4 \times 10^6)(9 \times 10^8)$$

40.
$$(2.1 \times 10^{-4})(4 \times 10^{-7})$$

43. $2(4 \times 10^{9})(11 \times 10^{3})$

44.
$$(5 \times 10^{13})(9 \times 10^{-9})$$

46.
$$(6 \times 10^{-8})(12 \times 10^{-7})$$

41.
$$(1.6 \times 10^5)(3 \times 10^{11})$$

47.
$$(6 \times 10^{15})(3.2 \times 10^{2})$$

33.
$$(9.5 \times 10^{-4})(2 \times 10^{-5})$$

36.
$$13(5 \times 10^{7})(4 \times 10^{3})$$

39.
$$(6.1 \times 10^9)(8 \times 10^{14})$$

42.
$$(9 \times 10^{12})(0.3 \times 10^{-18})$$

45.
$$10(7 \times 10^6)(4 \times 10^9)$$

48.
$$(5 \times 10^8)(2.6 \times 10^{-16})$$

- **49**. In 1990, the St. Louis metropolitan area had an average of 82 \times 10⁻⁶ g/m³ of pollutants in the air. How many grams of pollutants were there in $2 \times 10^3 \,\mathrm{m}^3$ of air?
- **50**. Light will travel approximately 5.88 $imes 10^{12}$ mi in one year. This is called a light-year. Suppose a star is 2×10^4 light-years away. How many miles is it to that star?
- **51.** The weight of 1 m³ of air is approximately 1.3×10^3 g. Suppose that the volume of air inside of a building is 3×10^6 m³. How much does the air inside the building weigh?
- **52**. Light will travel 1.18 imes 10 10 in. in 1 s. How far will light travel in 1 nanosecond, 1×10^{-9} s?