_____ Class _____ Date _____

Practice 8-7

Example Exercises

Example 1

Simplify each expression. Use positive exponents.

1. $(x^2)^3$	2 . $(a^4)^2$	3. $(2^3)^2$	4. $(d^3)^{-2}$
5. $(b^{-7})^2$	6 . $(m^{-2})^{-4}$	7. $(3^{-2})^2$	8. $x^2 \cdot (x^2)^5$
9 . $(y^3)^4$	10 . $d^2 \cdot (d^3)^4$	11 . $n^8 \cdot (n^{-2})^2$	12 . $(a^3)^{-3} \bullet a^5$
13 . $3^2 \cdot (3^2)^2$	14. $x \cdot (x^4)^6$	15 . $b^{-3} \cdot (b^2)^3$	16 . $(y^3)^{-5} \bullet y^{20}$

Example 2

Simplify each expression. Use positive exponents.

17. $(xy)^3$	18. $(x^2y)^4$	19 . $(m^{-2}n^3)^{-2}$
20. $(5a^3)^2$	21. $(7b^{-1})^2$	22 . $(2a^2b^3)^2$
23 . $a^3 \cdot (a^2 b)^4$	24. $(x^{-2})^3 (x^2 y^3)^4$	25 . $(6x^2)^2 (3x^2y)^3$
26. $(m^2)^{-4} (m^2 n^3)^2$	27. $(x^3y^2)^2(xy^3)^4$	28 . $(a^2b^3)^{-1}(a^{-2}b)^{-5}$

Example 3

Multiply. Give your answers in scientific notation.

29. $(3 \times 10^4)^3$	30. $(3 \times 10^{-5})^2$	31 . (8 $ imes$ 10 ¹⁰) ²
32. $(4 \times 10^{-7})^2$	33. $(6 \times 10^{7})^{3}$	34 . $(2 \times 10^3)^5$
35. $(2 \times 10^6)^{-2}$	36. $10^3 \cdot (5 \times 10^8)^2$	37. $10^2 \cdot (6 \times 10^9)^2$
38. $10^{-4} \cdot (3 \times 10^{4})^{2}$	39. $10^{-7} \cdot (5 \times 10^3)^3$	40 . $(10^5)^2(8 \times 10^{-4})^2$

- 41. The Earth is shaped somewhat like a sphere. The volume of a sphere can be calculated by using the formula $V = \frac{4}{3}\pi r^3$. The radius of the Earth is 2.1 \times 10⁷ ft. What is the volume of the Earth?
- 42. The volume of a cylindrical water storage tank can be calculated by using the formula $V = 3.14r^2h$. The radius of the tank is 1×10^2 ft. The height of the tank is 5 \times 10¹ ft. What is the volume of the tank?
- 43. The kinetic energy, in joules, of a moving object can be found by using the formula $E = \frac{1}{2}mv^2$, where *m* is the mass and *v* is the speed of the object. The mass of a proton is 1.67 \times 10⁻²⁷ kg. Find the kinetic energy of a proton traveling 2.5 \times 10⁸ m/s.