Algebra – Things to Remember!								
Scientific Notation:		Exponents:		Properties of Real Numbers:				
3.2×10^{13}		$(-3)^2 \neq -3^2$	$x^m \bullet x^n = x^{m+n}$	Commutative Property: $a + b = b + a$	ab = ba			
The first number must be $1 \le n < 10$		$2^0 = 1$ $(x^n)^m = x^{n \cdot m}$		Associative Property: $a+(b+c) = (a+b)$				
Factorial:	Absolute Value:		. ,	Distributive Property: $a(b+c) = ab + ac$	2			
5! = 5•4•3•2•1	-5 =5	$4^{-3} = \frac{1}{4^3}$	$\frac{x^m}{x^n} = x^{m-n}$	Identity: $a + 0 = a$	a • 1 = a			
1! = 1	5 = 5	4 ³	\mathcal{A}	Inverse: $a + (-a) = 0$	$a \bullet (1/a) = 1$			
<i>FYI</i> : 0!=1	Represents distance		$(xy)^n = x^n \bullet y^n$	Zero Property:	$\mathbf{a} \bullet 0 = 0$			
Undefined:		Polygons and sides:		Degree:				
6		triangle -3 octagon -8		Degree of monomial = sum of exponents				
$\frac{6}{7-x}$ is undefined when $x = 7$ since		quadrilateral – 4 nonagon – 9		$4x^3$ is of degree 3				
the denominator $= 0$.		pentagon – 5 decagon – 10		x^2y^3 is of degree 5				
Multiply: (distribute or FOIL)		hexagon – 6 dodecagon - 12 septagon – 7		Solving Equations:				
$(x+3)(x+2) = x \cdot x + x \cdot 2 + 3 \cdot x + 3 \cdot 2$				1. Deal with any parentheses in the problem.				
$= x^{2} + 5x + 6$		Direct Variation:		2. Combine similar terms on same side of $=$ sign.				
$(a+b)^2 = a^2 + 2ab$		y = kx where $k = constant of variation$		3. Get the needed variables on the same side of $=$ sign.				
		k = y/x		4. Isolate the needed variable by add or subtract.				
$(a-b)^2 = a^2 - 2ab + b^2$				5. Find the needed variable by divide or multiply.				
Add Fractions:		Factor:		Quadratic Equation:	Interval Notation:			
Get the common denominator:		Look for a GCF (greatest common factor)		$x^2 - 5x + 6 = 0$ Set = 0.	$(1,5) \leftrightarrow 1 < x < 5$			
$\frac{5x}{6} + \frac{3x}{2} = \frac{5x}{6} + \frac{9x}{6} = \frac{14x}{6} = \frac{7x}{3}$		Factor binomial or trinomial.		(x-3)(x-2) = 0 Factor.	$[1,5] \leftrightarrow 1 \le x \le 5$			
6 2 6 6 6 3		$a^2 - b^2 = (a+b)(a-b)$		x = 3; x = 2 Find roots				
Inequalities:		Systems:		Function: Passes the vertical line test.	Parabola:			
$5 - 3x \le 13 + x$ R	Remember to	y - 2x = 1	Linear: substitute;	A set of ordered pairs in which each <i>x</i>	$y = ax^2 + bx + c$			
$-3x \le 8+x$ cha	ange direction	y + 2x = 9	add to eliminate one	element has only one y element	Axis of symmetry:			
	e		variable or graph.	associated with it.	5 5			
	inequality when	$y = x^2 - x - 6$	Linear Quadratic:	f(x) = 3x + 4	$x = \frac{-b}{2a}$			
$x \ge -2$ mult/c	div by a negative.	y = 2x - 2	substitute or graph	$f(3) = 3 \cdot 3 + 4 = 13$	Roots: where the			
x = abscissa, y = ordinate		For inequality systems, graph.		Parallel and Perpendicular:	graph crosses the			
Slope:		Equations of Lines: <i>m</i> = slope		Parallel: slopes are equal.	<i>x</i> -axis.			
vertical change _ rise _ $y_2 - y_1$		y = mx + b slope-intercept		Perpendicular: slopes are negative	л илі <u>э</u> .			
$m = \frac{vertical \ change}{horizontal \ change} = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}.$		$y - y_1 = m(x - x_1)$ point-slope		reciprocals (flip over and negate)				
		1						

54

Perimeter: add the distances around		Pythagorean Theorem:		Trig: Right triangles only		
the outside.		Right Triangles only. $c^2 = a^2 + b^2$		$\sin \measuredangle A = \frac{o}{h}; \ \cos \measuredangle A = \frac{a}{h}; \ \tan \measuredangle A = \frac{o}{a}$		
		Triples: 3, 4, 5		n n a		
Circumference: $C = 2\pi r = \pi d$		5, 12, 13		Angle of elevation: from horizontal line of sight up.		
		8, 15, 17		Angle of depression: from horizontal line of sight down.		
A	X 7 - 1	7, 24, 25	Deter			
Area: Volume and Surface Area:			Data: 5 Statistical Summary: minimum, maximum, median, 1 st quartile, 3 rd quartile			
$A_{triangle} = \frac{1}{2}bh$	$V_{\text{rectangular solid}} = l \bullet w \bullet h$ $SA_{\text{rectangular solid}} = 2lh + 2hw + 2lw$					
2			Quartiles divide data into 4 equal parts.			
$A_{equilateral\ triangle} = rac{s^2\sqrt{3}}{4}$	$V_{\rm cylinder} = \pi r^2 h$		Percentiles divide data into 100 equal parts.			
	$SA_{\text{closed cylinder}} = 2\pi rh + 2\pi r^2$		Percentile rank of score $x = \frac{number of scores below x}{\bullet} \cdot 100$, where <i>n</i> is			
$A_{\text{rectangle}} = bh$	Shclosed cylinder – Zittin + Zitti		reference rank of score $x = \frac{1}{n}$ •100, where <i>n</i> is			
$A_{\rm square} = bh = s^2$		leasurement:	the number of scores.			
$A_{\text{parallelogram}} = bh$ Relative error = <u>measure-actual</u>			Mean = average.			
				fode = most often (may be more than one answer).		
$A_{\text{rhombus}} = bh = \frac{d_1 \cdot d_2}{2}$			Median = middle.			
_	Permutatio		Outliers = values that are far away from the rest of the data. Median best describes data if outliers exist.			
$A_{\text{trapezoid}} = \frac{1}{2}h(b_1 + b_2)$	Arrangement in specific order.		Range = difference between the maximum and minimum values.			
$A_{\text{circle}} = \pi r^2$	${}_{n}\mathbf{P}_{r} = \frac{n!}{(n-r)!}$			Range – anterence between the maximum and minimum values.		
n_2	Probability: $P(A') = 1 - P(A)$ complement			Box and Whisker Plot: 1 st and 3 rd quartiles are at the		
$A_{\text{sector of circle}} = \frac{n}{360} \pi r^2$	$P(A \text{ and } B) = P(A) \cdot P(B)$ independent			ends of the box, median is a vertical line in the box, and		
1 2	$P(A \text{ and } B) = P(A) \bullet P(B/A)$ dependent			the max/min are at the ends of the whiskers.		
$A_{\text{semicircle}} = \frac{1}{2} \pi r^2$	P(A or B) = P(A) + P(B) mutually exclusive			Helpful in interpreting the distribution of data.		
1 2	P(A or B) = P(A) + P(B) - P(A and B) not exclusive			•-• • ••		
$A_{\text{quarter circle}} = \frac{1}{4}\pi r^2$	P(B/A) = P(A and B)/P(A) conditional probability			65 70 80 90 100		
4 P(B/A) means probability of B given A Literal equations: Sets:			Exponential Growth and Decay:			
Literal equations : a = b + cd, solve for <i>c</i> .	10 1 10 1	on - all elements in both sets	1	Decay: $y = ab^x$ where $a > 0$ and $0 < b < 1$		
a = b + ca, solve for c. a - b = cd				Decay. $y = ab$ where $a > 0$ and $0 < b < 1$		
a - b = c	$A \cap B$ Intersection - elements where se					
$\frac{1}{d}$ Use same strategies A' Complement - elements not in the s			et. Growth: $y = ab^x$ where $a > 0$ and $b > 1$			
as for solving equations.	$\{ \} \text{ or } \emptyset m$	eans null set.				