Algebra - Things to Remember!

| Scientific Notation: $3.2 \times 10^{13}$ <br> The first number must be | Exponents:$(-3)^{2} \neq-3^{2}$$2^{0}=1$$4^{-3}=\frac{1}{4^{3}}$$\begin{aligned} & x^{m} \cdot x^{n}=x^{m+n} \\ & \left(x^{n}\right)^{m}=x^{n \cdot m} \\ & \frac{x^{m}}{x^{n}}=x^{m-n} \\ & (x y)^{n}=x^{n} \cdot y^{n} \end{aligned}$ | Properties of Real Numbers: <br> Commutative Property: $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a} \quad \mathrm{ab}=\mathrm{ba}$ <br> Associative Property: $a+(b+c)=(a+b)+c \quad a(b c)=(a b) c$ <br> Distributive Property: $a(b+c)=a b+a c$ <br> Identity: <br> $a+0=a$ <br> a•1 = a <br> Inverse: <br> $a+(-a)=0$ <br> a $\cdot(1 / a)=1$ <br> Zero Property: <br> a•0 $=0$ |  |
| :---: | :---: | :---: | :---: |
| Factorial: Absolute Value: <br> $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$ $\|-5\|=5$ <br> $1!=1$ $\|5\|=5$ <br> $F Y I: 0!=1$ Represents distance |  |  |  |
| Undefined: $\frac{6}{7-x}$ is undefined when $x=7$ since the denominator $=0$. | $\begin{array}{\|ll\|} \hline \text { Polygons and sides: } \\ \text { triangle }-3 & \text { octagon }-8 \\ \text { quadrilateral }-4 & \text { nonagon }-9 \\ \text { pentagon }-5 & \text { decagon }-10 \\ \text { hexagon }-6 & \text { dodecagon }-12 \\ \text { septagon }-7 & \end{array}$ | Degree: <br> Degree of monomial = sum of expone <br> $4 x^{3}$ is of degree 3 <br> $x^{2} y^{3}$ is of degree 5 |  |
| Multiply: (distribute or FOIL) $\begin{aligned} &(x+3)(x+2)=x \cdot x+x \cdot 2+3 \cdot x+3 \cdot 2 \\ &=x^{2}+5 x+6 \\ &(a+b)^{2}=a^{2}+2 a b+b^{2} \\ &(a-b)^{2}=a^{2}-2 a b+b^{2} \end{aligned}$ | hexagon -6 <br> septagon -7$\quad$ dodecagon -12 <br> Direct Variation: <br> $y=k x$ where $k=$ constant of variation <br> $k=y / x$ | Solving Equations: <br> 1. Deal with any parentheses in the problem. <br> 2. Combine similar terms on same side of $=$ sign. <br> 3. Get the needed variables on the same side of $=$ sign. <br> 4. Isolate the needed variable by add or subtract. <br> 5. Find the needed variable by divide or multiply. |  |
| Add Fractions: <br> Get the common denominator: $\frac{5 x}{6}+\frac{3 x}{2}=\frac{5 x}{6}+\frac{9 x}{6}=\frac{14 x}{6}=\frac{7 x}{3}$ | Factor: <br> Look for a GCF (greatest common factor) Factor binomial or trinomial. $a^{2}-b^{2}=(a+b)(a-b)$ | Quadratic Equation: $\begin{array}{ll} x^{2}-5 x+6=0 & \text { Set }=0 \\ (x-3)(x-2)=0 & \text { Factor. } \\ x=3 ; \quad x=2 & \text { Find roots } \end{array}$ | Interval Notation: <br> $(1,5) \leftrightarrow 1<x<5$ <br> $[1,5] \leftrightarrow 1 \leq x \leq 5$ |
| Inequalities:  <br> $5-3 x \leq 13+x$ Remember to <br> $-3 x \leq 8+x$ change direction <br> $-4 x \leq 8$ of inequality when <br> $x \geq-2$ mult/div by a negative. | Systems: <br> $\mathrm{y}-2 x=1$ <br> $\mathrm{y}+2 x=9$ Linear: substitute; <br> add to eliminate one <br> variable or graph. <br> $\mathrm{y}=x^{2}-x-6$  <br> $\mathrm{y}=2 x-2$  <br> Linear Quadratic: <br> substitute or graph | Function: Passes the vertical line test. A set of ordered pairs in which each $x$ element has only one y element associated with it. $\begin{aligned} & f(x)=3 x+4 \\ & f(3)=3 \cdot 3+4=13 \end{aligned}$ | Parabola: $y=a x^{2}+b x+c$ <br> Axis of symmetry: $x=\frac{-b}{2 a}$ |
| $x=$ abscissa, $\mathrm{y}=$ ordinate <br> Slope: $m=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text {. }$ | For inequality systems, graph. <br> Equations of Lines: $m=$ slope <br> $y=m x+b$ slope-intercept <br> $y-y_{1}=m\left(x-x_{1}\right)$ point-slope | Parallel and Perpendicular: <br> Parallel: slopes are equal. <br> Perpendicular: slopes are negative reciprocals (flip over and negate) | graph crosses the $x$-axis. |

Perimeter: add the distances around the outside.

Circumference: $C=2 \pi r=\pi d$

## Pythagorean Theorem:

Right Triangles only. $c^{2}=a^{2}+b^{2}$
Triples: 3, 4, 5
5, 12, 13
8, 15, 17
7, 24, 25

Trig: Right triangles only
$\sin \measuredangle A=\frac{o}{h} ; \cos \measuredangle A=\frac{a}{h} ; \tan \measuredangle A=\frac{o}{a}$
Angle of elevation: from horizontal line of sight up.
Angle of depression: from horizontal line of sight down.


