Practice 7-6

Example Exercises

Example 1

Use natural logarithms to solve each equation.

1.
$$e^x = 15$$

2.
$$4e^x = 10$$

3.
$$e^{x+2} = 50$$
 4. $4e^{3x-1} = 5$

4.
$$4e^{3x-1} = 5$$

5.
$$e^{x-4} = 2$$

6.
$$5e^{6x+3} = 0.1$$
 7. $e^x = 1$

7.
$$e^{x} =$$

8.
$$e^{\frac{x}{5}} = 32$$

9.
$$3e^{3x-5} = 49$$

10.
$$7e^{5x + 8} = 0.23$$

11. 6 -
$$e^{12x}$$
 = 5.2 12. $e^{\frac{2x}{4}}$ = 25

12.
$$e^{\frac{2x}{4}} = 25$$

13.
$$\ln e^x = 3$$

14.
$$3 \ln e^{2x} = 12$$

15.
$$e^{\ln x} = 21$$

16.
$$e^{x+6}+5=1$$

Example 2

For Exercises 17–19, use the formula for the maximum velocity v of a rocket $v = c \ln R$, where c is the velocity of the exhaust and R is the mass ratio of the rocket.

- 17. Find the velocity of a rocket when R = 2 and exhaust velocity is 2 km/s.
- **18**. The velocity needed to escape the earth's gravitational field is 11.2 km/s. The exhaust gas velocity of a rocket is 2 km/s. What value of R would the rocket need to achieve escape velocity?
- **19**. Find the velocity of a rocket when $R = 3.27 \times 10^6$ and exhaust velocity is 3.1 km/s.

Example 3

Solve each equation.

20.
$$\ln x = 2$$

21.
$$\ln(x + 3) = 1$$

22.
$$\ln (2x - 3) = -1$$

23.
$$4 \ln x = -2$$

24.
$$2\ln(3x - 4) = 7$$

25.
$$5\ln(4x - 6) = -6$$

26.
$$-7 + \ln 2x = 4$$

27.
$$3 - 4\ln(8x + 1) = 12$$

28.
$$\ln x + \ln 3x = 14$$

29.
$$2 \ln x + \ln x^2 = 3$$

30.
$$\ln x + \ln 4 = 2$$

31.
$$\ln x - \ln 5 = -1$$

32.
$$\ln (2x + 1) + \ln x = 5$$

33.
$$\ln 2x + \ln (x - 2) = 1$$

34.
$$\ln (3x - 4) - \ln x = 11$$

35.
$$\ln 3x + \ln 2x = 3$$

36.
$$5\ln(3x - 2) = 15$$

37.
$$7\ln(2x + 5) = 8$$

38.
$$\ln (3x + 4) = 5$$

39.
$$\ln \left(\frac{2x}{41} \right) = 2$$

40.
$$e^{2x} = 25$$