\qquad Class \qquad Date \qquad

Practice 9-4

M M ixed

Simplify each radical expression. Assume that all variables under radicals represent positive numbers.

1. $\sqrt{32}$
2. $\sqrt{22} \cdot \sqrt{8}$
3. $\sqrt{147}$
4. $\sqrt{\frac{17}{144}}$
5. $\sqrt{a^{2} b^{5}}$
6. $\frac{2}{\sqrt{6}}$
7. $\sqrt{80}$
8. $\sqrt{27}$
9. $\frac{\sqrt{256}}{\sqrt{32}}$
10. $\frac{8}{\sqrt{7}}$
11. $\sqrt{12 x^{4}}$
12. $\frac{\sqrt{96}}{\sqrt{12}}$
13. $\sqrt{200}$
14. $\sqrt{\frac{12}{225}}$
15. $\sqrt{15} \cdot \sqrt{6}$
16. $\sqrt{120}$
17. $\frac{4}{\sqrt{2 a}}$
18. $(3 \sqrt{2})^{3}$
19. $\sqrt{250}$
20. $\frac{\sqrt{65}}{\sqrt{13}}$
21. $\sqrt{84}$
22. $\sqrt{\frac{18}{121}}$
23. $\sqrt{48 s^{3}}$
24. $3 \sqrt{24}$
25. $\sqrt{15} \cdot \sqrt{35}$
26. $\sqrt{160}$
27. $\frac{6}{\sqrt{3}}$
28. $\frac{\sqrt{48 n^{6}}}{\sqrt{6 n^{3}}}$
29. $\sqrt{136}$
30. $\sqrt{\frac{27 x^{2}}{256}}$
31. $\sqrt{m^{3} n^{2}}$
32. $\frac{\sqrt{180}}{\sqrt{9}}$
33. $\sqrt{18} \cdot \sqrt{8}$
34. $(10 \sqrt{3})^{2}$
35. $\sqrt{\frac{17}{64}}$

Use the Pythagorean theorem to find n. Express n as a radical in simplest form.
36.

37.

38.

39.

40.

42.

43.

41.

44.

