Practice 9-4

Mixed Exercises

Simplify each radical expression. Assume that all variables under radicals represent positive numbers.

1.
$$\sqrt{32}$$

2.
$$\sqrt{22}$$
 • $\sqrt{8}$ 3. $\sqrt{147}$

3.
$$\sqrt{147}$$

4.
$$\sqrt{\frac{17}{144}}$$
 5. $\sqrt{a^2b^5}$

5.
$$\sqrt{a^2b}$$

6.
$$\frac{2}{\sqrt{6}}$$

8.
$$\sqrt{27}$$

7.
$$\sqrt{80}$$
 8. $\sqrt{27}$ 9. $\frac{\sqrt{256}}{\sqrt{32}}$ 10. $\frac{8}{\sqrt{7}}$

10.
$$\frac{8}{\sqrt{7}}$$

11.
$$\sqrt{12x^4}$$

12.
$$\frac{\sqrt{96}}{\sqrt{12}}$$

13.
$$\sqrt{200}$$

14.
$$\sqrt{\frac{12}{22!}}$$

11.
$$\sqrt{12x^4}$$
 12. $\frac{\sqrt{96}}{\sqrt{12}}$ 13. $\sqrt{200}$ 14. $\sqrt{\frac{12}{225}}$ 15. $\sqrt{15} \cdot \sqrt{6}$

16.
$$\sqrt{120}$$

17.
$$\frac{4}{\sqrt{2}a}$$

16.
$$\sqrt{120}$$
 17. $\frac{4}{\sqrt{2}a}$ 18. $\left(3\sqrt{2}\right)^3$ 19. $\sqrt{250}$ 20. $\frac{\sqrt{65}}{\sqrt{13}}$

19.
$$\sqrt{250}$$

20.
$$\frac{\sqrt{65}}{\sqrt{13}}$$

21.
$$\sqrt{84}$$

22.
$$\sqrt{\frac{18}{121}}$$

23.
$$\sqrt{48s^3}$$

24.
$$3\sqrt{24}$$

21.
$$\sqrt{84}$$
 22. $\sqrt{\frac{18}{121}}$ **23.** $\sqrt{48s^3}$ **24.** $3\sqrt{24}$ **25.** $\sqrt{15}$ • $\sqrt{35}$

26.
$$\sqrt{160}$$

27.
$$\frac{6}{\sqrt{3}}$$

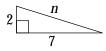
28.
$$\frac{\sqrt{48n^6}}{\sqrt{6n^3}}$$

29.
$$\sqrt{136}$$

29.
$$\sqrt{136}$$
 30. $\sqrt{\frac{27x^2}{256}}$

31.
$$\sqrt{m^3n^2}$$

32.
$$\frac{\sqrt{180}}{\sqrt{9}}$$


33.
$$\sqrt{18} \cdot \sqrt{8}$$
 34. $(10\sqrt{3})^2$

34.
$$(10\sqrt{3})^2$$

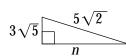
35.
$$\sqrt{\frac{17}{64}}$$

Use the Pythagorean theorem to find n. Express n as a radical in simplest form.

36.

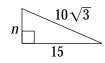
37.

38.



39.

40.


42.

43.

44.

